首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26821篇
  免费   2550篇
  国内免费   1449篇
电工技术   384篇
综合类   1569篇
化学工业   11836篇
金属工艺   1522篇
机械仪表   335篇
建筑科学   683篇
矿业工程   327篇
能源动力   3398篇
轻工业   2557篇
水利工程   123篇
石油天然气   1613篇
武器工业   242篇
无线电   970篇
一般工业技术   3126篇
冶金工业   1077篇
原子能技术   609篇
自动化技术   449篇
  2024年   42篇
  2023年   865篇
  2022年   1077篇
  2021年   1205篇
  2020年   1211篇
  2019年   1144篇
  2018年   1009篇
  2017年   1086篇
  2016年   945篇
  2015年   844篇
  2014年   1301篇
  2013年   1636篇
  2012年   1526篇
  2011年   1717篇
  2010年   1305篇
  2009年   1360篇
  2008年   1230篇
  2007年   1515篇
  2006年   1355篇
  2005年   1149篇
  2004年   1054篇
  2003年   943篇
  2002年   812篇
  2001年   702篇
  2000年   609篇
  1999年   538篇
  1998年   419篇
  1997年   357篇
  1996年   321篇
  1995年   284篇
  1994年   275篇
  1993年   209篇
  1992年   158篇
  1991年   118篇
  1990年   99篇
  1989年   73篇
  1988年   57篇
  1987年   52篇
  1986年   23篇
  1985年   30篇
  1984年   30篇
  1983年   14篇
  1982年   15篇
  1980年   10篇
  1964年   9篇
  1963年   5篇
  1961年   5篇
  1957年   8篇
  1955年   8篇
  1951年   20篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
The development of efficient and stable oxygen evolution reaction (OER) catalysts is an ongoing challenge. In order to solve the problem of low oxygen evolution efficiency of the current OER catalysts, a novel material was synthesized by the incorporation of NiFeCr-LDH and MoS2, and its structural and electrochemical properties were also investigated. The introduction of MoS2 improves the electrochemical performance of NiFeCr-LDH. The polarization curve shows that the potential of composite material is only 1.50 V at a current density of 10 mA cm?2, which is far superior to commercial precious metal catalysts. In addition, the stability experiment shows that the composite material has excellent stability, and the current density has little change after 500 cycles. Furthermore, we found that some metal ions, such as Ni, Cr and Mo, exist in the form of high valence on the surface of NiFeCr-LDH@MoS2, which is also conducive to the occurrence of oxygen evolution reaction.  相似文献   
72.
A promising electrocatalyst containing variable percentage of V2O5–TiO2 mixed oxide in graphene oxide support was prepared by embedding the catalyst on Cu substrate through facile electroless Ni–Co–P plating for hydrogen evolution reaction. The solvothermal decomposition method was opted for tuning the crystalline characteristics of prepared material. The optimized mixed oxide was well characterized, active sites centres were identified and explained by X-ray diffraction, high resolution tunnelling electron microscopy, scanning electron microscopy coupled with energy dispersive X-ray and X-ray photon spectroscopy analysis. The structural and electronic characteristics of material was done by fourier transform infrared spectroscopy and the electrochemical behaviour of the prepared material was evaluated by using Tafel plot, electrochemical impedance analysis, linear sweep voltammetry, open circuit analysis and chronoamperometry measurements. The results show the enhanced catalytic activity of Ni–Co–P than pure Ni–P plate, due to synergic effect. Moreover, the prepared mixed oxide incorporated Ni–Co–P plate has a high activity towards HER with low over potential of 101 mV, low Tafel slope of 36 mVdec?1, high exchange current density of 9.90 × 10?2 Acm?2.  相似文献   
73.
Developing efficient and stable non-noble metal oxygen evolution reaction (OER) electrocatalysts for sustainable overall water-splitting is extremely desirable but still a great challenge. Herein, we developed a facile strategy to fabricate Co3O4–CoOOH heterostructure nanosheet arrays with oxygen vacancies grown on carbon paper (Co3O4–CoOOH/CP). Benefiting from the unique 3D architecture, large surface area, synergistic effects between Co3O4, CoOOH and oxygen vacancies, the obtained self-supporting Co3O4–CoOOH/CP presents excellent electrocatalytic OER activity (low overpotentials of 245 and 390 mV at 10 and 100 mA cm−2) and robust long-term stability in alkaline condition. The present strategy provides the opportunities for the future rational design and discovery of high-performance non-noble metal based electrocatalysts for advanced water oxidation and beyond.  相似文献   
74.
Water electrolysis is an efficient approach for high-purity hydrogen production. However, the anodic sluggish oxygen evolution reaction (OER) always needs high overpotential and thus brings about superfluous electricity cost of water electrolysis. Therefore, exploiting highly efficient OER electrocatalysts with small overpotential especially at high current density will undoubtedly boost the development of industrial water electrolysis. Herein, we used a simple hydrothermal method to prepare a novel FeOOH–CoS nanocomposite on nickel foam (NF). The as-prepared FeOOH–CoS/NF catalyst displays an excellent OER performance with extremely low overpotentials of 306 and 329 mV at 500 and 1000 mA cm−2 in 1.0 M KOH, respectively. In addition, the FeOOH–CoS/NF catalyst can maintain excellent catalytic stability for more than 50 h, and the OER catalytic activity shows almost no attenuation no matter after 1000 repeated CV cycles or 50 h of stability test. The high catalytic activity and stability have exceeded most non-noble metal electrocatalysts reported in literature, which makes the FeOOH–CoS/NF composite catalyst have promising applications in the industrial water electrolysis.  相似文献   
75.
Manganese oxides of different crystalline structures: α-MnO2, δ-MnO2, α,γ-MnO2 and Mn2O3; were treated with the organic compounds picolinic acid, ethylenediamine and pyridine; and were applied as catalysts in the chemical water oxidation reaction using Ce(IV) ammonium nitrate as sacrificial oxidant. The treatment led to modifications in the oxides properties, such as reduction of the particle size, increase of surface area and partial reduction of Mn4+ to Mn3+ for the Mn(IV) oxides, or of Mn3+ to Mn2+ for Mn2O3, because of favored interactions of the organic molecules with the lattice planes with higher d spacing. Oxygen evolution reaction (OER) tests showed the superior catalytic activity of the treated Mn(IV) oxides, for instance α,γ-MnO2-en presented TOF five times higher than pure α,γ-MnO2. The increase in surface area as well as the higher Mn3+ content caused by the treatment of the Mn(IV) oxides were correlated with the improvement in the OER catalytic activity.  相似文献   
76.
The production of hydrogen, a favourable alternative to an unsustainable fossil fuel remains as a significant hurdle with the pertaining challenge in the design of proficient, highly productive and sustainable electrocatalyst for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, the dysprosium (Dy) doped copper oxide (Cu1-xDyxO) nanoparticles were synthesized via solution combustion technique and utilized as a non-noble metal based bi-functional electrocatalyst for overall water splitting. Due to the improved surface to volume ratio and conductivity, the optimized Cu1-xDyxO (x = 0.01, 0.02) electrocatalysts exhibited impressive HER and OER performance respectively in 1 M KOH delivering a current density of 10 mAcm?2 at a potential of ?0.18 V vs RHE for HER and 1.53 V vs RHE for OER. Moreover, the Dy doped CuO electrocatalyst used as a bi-functional catalyst for overall water splitting achieved a potential of 1.56 V at a current density 10 mAcm?2 and relatively high current density of 66 mAcm?2 at a peak potential of 2 V. A long term stability of 24 h was achieved for a cell voltage of 2.2 V at a constant current density of 30 mAcm?2 with only 10% of the initial current loss. This showcases the accumulative opportunity of dysprosium as a dopant in CuO nanoparticles for fabricating a highly effective and low-cost bi-functional electrocatalyst for overall water splitting.  相似文献   
77.
The electrochemical water splitting to produce H2 in high efficiency with earth-abundant-metal catalysts remains a challenge. Here, we describe a simple “cyclic voltammetry + ageing” protocol at room temperature to activate Ni electrode (AC-Ni/NF) for hydrogen evolution reaction (HER), by which Ni/Ni(OH)2 heterostructure is formed at the surface. In situ Raman spectroscopy reveals the gradual growth of Ni/Ni(OH)2 heterostructure during the first 30 min of the aging treatment and combined with polarization measurements, it suggests a positive relation between the Ni/Ni(OH)2 amount and HER performance of the electrode. The obtained AC-Ni/NF catalyst, with plentiful Ni–Ni(OH)2 interfaces, exhibits remarkable performance towards HER, with the low overpotential of only 30 mV at a H2-evolving current density of 10 mA/cm2 and 153 mV at 100 mA/cm2, as well as a small Tafel slope of 46.8 mV/dec in 1 M KOH electrolyte at ambient temperature. The excellent HER performance of the AC-Ni/NF could be maintained for at least 24 h without obvious decay. Ex situ experiments and in situ electrochemical-Raman spectroscopy along with density functional theory (DFT) calculations reveal that Ni/Ni(OH)2 heterostructure, although partially reduced, can still persist during HER catalysis and it is the Ni–Ni(OH)2 interface reducing the energy barrier of H1 adsorption thus promoting the HER performance.  相似文献   
78.
Transition metal-based heterostructure materials are considered as promising alternatives to state-of-the-art noble metal-based catalysts toward the oxygen evolution reaction (OER). Herein, for the first time, a simple interface engineering strategy is presented to synthesize efficient electrocatalysts based on a novel CoFe2O4/β-Ni(OH)2 heterogeneous structure for the electrochemical OER. Remarkably, the optimized CoFe2O4/β-Ni(OH)2 electrocatalyst, benefiting from its hierarchical hexagonal heterostructure with strong electronic interaction, enhanced intrinsic activity, and electrochemically active sites, exhibits outstanding OER electrocatalytic performance with a low overpotential of 278 mV to reach a current density of 10 mA cm−2, a small Tafel slope of 67 mV dec−1, and long-standing durability for 30 h. Its exceptional OER performance makes the CoFe2O4/β-Ni(OH)2 heterostructure a prospective candidate for water oxidation in alkaline solution. The proposed interface engineering provides new insights into the fabrication of high-performance electrocatalysts for energy-related applications.  相似文献   
79.
We report the catalytic enhancement of hydrogen generation by 1) in situ Fe (0) formed and 2) nitroarenes substrates during Fe3O4@Pd core-shell nanoparticles catalyzed tandem reaction. The active hydrogen species are generated in Pd shell, which either combine to form H2 gas or take part in relatively faster nitroarene reduction reaction. The rate of hydrogen generation from ammonia borane is dependent on the nitroarene substrate and is higher when 4-nitrophenol is used. This is due to the difference in ammonia borane adsorption on the surface of the catalyst. During recyclability, the H2 generation rate of 2 wt% Pd loaded samples is higher than other compositions. Such an enhancement has been attributed to the formation of Fe (0) via γ-FeOOH mediated by Pd species, presumably through Pd(OH)2. The electronic connection between Fe and Pd interface is thus shown to play an important role in the catalytic enhancement of the tandem reaction.  相似文献   
80.
To accelerate the commercialization of fuel cells, many efforts have been made to develope highly active and durable Pt-based catalyst for oxygen reduction reaction (ORR). Herein, PtCu porous nanowires (PNWs) with controllable composition are synthesized through an ultrasound-assisted galvanic replacement reaction. The porous structure, surface strain, and electronic property of PtCu PNWs are optimized by tuning composition, which can improve activity for ORR. Electrochemical tests reveal that the mass activity of Pt0.5Cu0.5 PNWs (Pt/Cu atomic ratio of 1:1) reaches 0.80 A mgPt?1, which is about 5 times higher than that of the commercial Pt/C catalyst. Notably, the improved activity of the porous nanowire catalyst is also confirmed in the single-cell test. In addition, the large contact area with the carrier and internal interconnection structure of Pt0.5Cu0.5 PNWs enables them to exhibit much better durability than the commercial Pt/C catalyst and Pt0.5Cu0.5 nanotubes in accelerated durability test.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号